Evaluating the IPS

W. Traub

ExoPAG meeting

1-2 June 2011, Alexandria VA

Cramer-Rao Bound (Fischer Matrix Analysis)

- The zero-noise image flux is F(x,y,t,a₁,a₂,...a_n) (elec.)
- The noise is $\sigma(x,y,t,a_1,a_2,...a_n)$ (elec.)
- Calculate partial derivatives f_i = dB/da_i
- Calculate matrix elements $b_{ij} = \Sigma_{xyt} f_i^* f_j / \sigma^2$ summing over all values of x,y,t.
- Calculate inverse matrix c = b⁻¹
- Then uncertainty in each parameter is $\sigma_i = (c_{ii})^{1/2}$
- Compare this σ_i with the actual scatter from fitting the time series of data; expect comparable values.

Ref.: Press, Numerical Recipes, see section on General Linear Least Squares.

Comparison with Simulations

- Actual uncertainties will be equal to or greater than the Cramer-Rao bounds.
- Experience with SIM-RV shows nearly equal.
- Value of simulation is
 - (a) demonstration of ability to extract parameters from simulated data, &
 - (b) demonstration that mission can henceforth be modeled using the CR formalism, &
 - (c) demonstration to world that we are serious.